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Constraint-based methods allow to analyze the flux distribution of genome-scale metabolic networks under various environmental or genetic conditions[1]. Several software and libraries were 

developed to perform flux analyses[2-4]. However, it often remains obscur for a modeler not used to informatics to add new constraints into the model, and thus to explore their own biological 

questions. Furthermore, the existing libraries have rarely been developed in a modular way, which makes difficult the implementation of new flux analysis methods.  

We developed FlexFlux, a flux analysis JAVA library. In FlexFlux, the modeler can easily add new constraints or new logical relations to model regulatory links without any informatics 

knowledge.  

Classical high-level functions have been implemented in the FlexFlux framework, such as flux variability analysis, knock out analysis and time dependant flux balance analysis. 

Two methods have been also implemented for the first time: comparative flux variability analysis and the best objective fitting functions. 

The modularity of FlexFlux allows the developers to easily add new functionalities. At last, the use of parallelization and solver tricks makes FlexFlux one of the fastest flux analysis 

frameworks. 

Availability: FlexFlux sources, Windows and Linux executables, developer and user documentation are available at http://lipm-bioinfo.toulouse.inra.fr/flexflux 

 

 

FlexFlux 

a flexible Java framework to perform 

flux balance analyses with regulatory constraints 

 FlexFlux principles 

We mainly focused the development at three levels: 

 Flexibility for the developer: the library is highly modular and new FBA methods are thus easy to develop. Moreover, several optimization solvers can be bound to FlexFlux without many 

efforts. For the moment, two solvers are bound: CPLEX and GLPK but the FlexFlux documentation indicates how to implement new solver links. Moreover, JAVA is a free language and does not 

need any license to use it on the contrary to commercial languages, such as Matlab. 

 Flexibility for the user: the high-level functions available in FlexFlux allow to address complex biological questions. Moreover, new regulatory constraints and conditions are easy to create. 

New biological questions are thus easy to address in FlexFlux. 

 Speed: the use of parallelization and solver tricks makes FlexFlux one of the fastest flux analysis frameworks. 

 

 FlexFlux  architecture 

The starting point of FlexFlux is the BioNetwork instance  which contains all the reactions, 

metabolites, genes and proteins that are involved in a metabolic network. Especially, it contains 

all the links between genes proteins and reactions (GPR) and the lower and upper bounds for 

each reaction flux. A BioNetwork instance is created from a SBML file (exchange format for 

metabolic networks) . 

The condition file contains objective functions, genetic or environmental constraints on the 

metabolic network, variables as well as new defined variables defined by the user. Multiple 

objective functions can be written. In this case, all objective functions are sequentially 

considered. The optimal value of an objective function becomes a new constraint (with a 

percentage of liberty than can be specified) for the following optimization. 

The interaction file contains relation links between variables . An interaction works with two 

parts: a condition that is checked and a consequence that will be done if the condition is true.  

The problem is translated into linear or mixed integer linear programming statements. 

Then, an external optimization library solves the problem. For the moment, only CPLEX and 

GLPK are bound  but it’s easy to bind other optimization libraries. 

Condition file  
#maximize biomass production 

obj : MAX(R_Biomass_Ecoli_core_w_GAM) 

#uptake values 

R_EX_lac_D_e -3 999999 

R_EX_glc_e -6.5 999999 

R_EX_o2_e -15 999999 

#Initial concentrations 

#Glucose 

M_glc_D_b 1.6 

#Lactose 

M_lac_D_b 5.8 

BINARY 

#Gene lacZ can be repressed (0) or expressed(1) 

lacZ 

Interactions file 
#The uptake of lactose can only be 

active when there is no glucose 

IF[M_glc_D_b>0]THEN[lacZ=0] 

IF[M_glc_D_b=0]THEN[lacZ=1] 

IF[lacZ=0]THEN[R_EX_lac_D_e=0] 
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 FlexFlux  high-level functions 

 Identification of dead reactions, i.e reactions that are not able to carry any flux and 

thus clearly represent missing information in the model 

 Flux Balance Analysis (FBA):  returns the value of the optimized objective function as 

well as all variable values, considering genetic, environmental and regulatory constraints 

 Flux Variability Analysis (FVA): returns the objective value, and the minimum and 

maximum value for each entity desired [5]. 

 Flux Variability Analysis Comparison: compares the results of two FVA  given a 

metabolic network, an objective function and two different set of constraints. This analysis 

returns the objective value, the minimum and maximum value for each entity desired, for 

both conditions.  

 Knock out analysis: consists in setting network entities  (genes, reactions or user 

defined) values to 0, and observe the effect on the objective function [1]. 

 Time dependant FBA: is based on external metabolic concentrations and cell density. 

Given initial metabolite concentrations, cell density, a time step and a number of iterations, 

this analysis returns the value of each metabolite and cell density for each time [6]. 

 Phenotypic phase analysis: computes the objective value for  a range of values of one 

or two fluxes. This allows to identify flux range sets where the metabolic network has the 

same behavior [7]. 

 Pareto analysis: determines which objective (or set of objectives) is optimized under 

some experimental conditions [8]. 

 Time dependant FBA 

For each plot, the X axis represents 

the time. 

A. Cell density variation.  

B. External glucose concentration.  

C. External lactose concentration.  

D. LacZ gene activation. 

While the glucose concentration is 

greater than 0, the gene lacZ is 

repressed. When all the glucose is 

used, lacZ is not repressed and the 

cell can use the lactose to grow. To 

go further in the analysis, interaction 

activation and persistence times can 

be specified. 

 

 Phenotypic phase analysis 

Effect of varying one flux  

on the optimal growth rate 
Effect of varying two fluxes 

on the optimal growth rate 

Phenotypic phases are 

calculated by optimizing the 

objective function with one or 

two changing reaction fluxes. 

Phenotypic phases 

(represented in different colors) 

corresponds to a specific 

metabolic network behavior. To 

give a hint on what reactions 

are active in each phase, a FVA 

is applied on each and the 

result is graphically shown : 

essential reactions are 

displayed. 

 

Best cellular objective fitting 

Each axis represents one objective function. The 

surface, called Pareto surface, is composed by points 

that are “Pareto optimal” that are defined by the fact 

that the value of one objective can be increased only 

at the cost of another. The blue points represent 

experimental values. The position of the blue points 

from the Pareto surface enables to identify which 

objectives are optimized in the experimental 

conditions.  
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