
The paraloop 1.3 documentation

Paraloop 1.3: The documentation

Introduction
The program paraloop, written in object perl, distributes the treatments on the processors of a
parallel computor, hiding to the end user the architecture of the machine.

License
paraloop is governed by the CeCILL license, release 2. See http://www.cecill.info for the

details.

General information:
Paraloop may be used when the work to be done has to be splitted in N tasks. Each task reads the input

data from some file, and each task writes the output data in a separate file, thus avoiding any synchronization
problem (note that this is not true when the mode “load balancing” is applied). Each task is in fact a “loop”,
the processing executed for each iteration is called the “atomic job”. Each task logs messages in a separate
file.

Paraloop may be used on SMP multiprocessor machines, as well as on clusters. If a queueing system is
installed on the machine, Paraloop may use it (currently only PBS and SGE are supported), while if there is
no queing system paraloop tries to optimize the processor use.

The object architecture makes easy to perform several different tasks with paraloop: you may use one of
the general plugins (like Shell or BioPerl), or a more specific plugin (like Blast), or you may write a new
plugin.

Installing and configuring paraloop
There is no installation script (sorry). The first step is to download the tar gz file, and to extract the files

and directories:

ls -l
total 24
drwxrwxr-x 2 manu prodom 4096 May 27 13:47 bin
drwxrwxr-x 2 manu prodom 4096 May 27 13:47 documentation
drwxrwxr-x 2 manu prodom 4096 May 27 13:47 etc
drwxrwxr-x 3 manu prodom 4096 May 27 13:47 lib

Needed modules
There is no mandatory module to use paraloop in a general way, however it is better installing three perl

products:

1. The BpInput object, which is extended by the Blast, the Bioperl and Dummy plugins, needs bioperl1 to
read and write the input files. So, if you want to use one of these plugins, you'll have to install bioperl.

1 www.bioperl.org

 1/14

The paraloop 1.3 documentation

2. you may have more precise log files if you install the module Time::HiRes, as this let you retrieve timer
information with a resolution better than 1 s. You may find this module from
http://search.cpan.org/~jhi/Time-HiRes-1.66/HiRes.pm

3. If you plan to use the Schedulers System or Rsystem (see later), you should install on each node of
your cluster the module Proc::ProcessTable, (available on cpan) which can check in the system
process tables to know the state of a given process. If this module is not installed, the little script
is_running.pl uses a Unix command to check this: please have a look to this (very simple) script to
verify it works well on your system.

Choosing a root directory
The directory in which paraloop is installed (the root directory) should be mounted on every processor

you are planning to use: this is particularly true if you are working on a cluster. Moreover, the path to this
directory should be the same on every cluster node. If you are an user, the easiest is to choose your home
directory as root directory. If you are an administrator, a better solution is to choose /usr/local,
/usr/share, etc. After extraction, you have the following directories:

ls -l
total 28
drwxrwxr-x 3 manu manu 4096 2008-09-30 10:28 bin
drwxrwxr-x 3 manu manu 4096 2008-09-30 10:28 documentation
drwxrwxr-x 4 manu manu 4096 2008-09-30 10:28 etc
-rw-rw-r-- 1 manu manu 43 2008-09-30 10:28 INSTALL
drwxrwxr-x 5 manu manu 4096 2008-09-30 10:28 lib
-rw-rw-r-- 1 manu manu 725 2008-09-30 10:28 README
drwxrwxr-x 5 manu manu 4096 2008-09-30 10:28 tests

Defining the environment variable $PARALOOP:
This variable should be defined in order for paraloop to find the libraries. It should be set to the complete

path of the paraloop directory:

setenv PARALOOP /usr/local/paraloop-1.3

You should set this environment variable in your ~/.csh file as an user, or in /etc/csh.cshrc as an
administrator. Or in the corresponding profile files for sh.

Calling paraloop:

You have several solutions to call the program:

i. Using the whole path:
$PARALOOP/bin/paraloop.pl

ii. Defining an alias:
alias paraloop $PARALOOP/bin/paraloop.pl

iii. Creating a link from a directory already in the path. For an admin:
cd /usr/local/bin;
ln -s $PARALOOP/bin/paraloop.pl .

iv. Copying the file paraloop.pl to /usr/local/bin

From now on, we consider that paraloop may be called with the command:
paraloop.pl

configuring paraloop:
IMPORTANT: Several template configuration files, corresponding to several use cases, may be found in

the directory $PARALOOP/etc/templates

 2/14

http://search.cpan.org/~jhi/Time-HiRes-1.66/HiRes.pm

The paraloop 1.3 documentation

Many parameters must be specified for paraloop to work correctly. Some of them can be specified
though the command line, but others must be specified in some configuration file. You should edit the
following files:

• $PARALOOP/etc/unix_cmds.cfg

• $PARALOOP/etc/paraloop.root.cfg

• $PARALOOP/etc/paraloop.cfg

This is particularly important if you are installing paraloop as an administrator, to be used by every user in
the system.

The parameters you should set in those files are essentially the same, but their meaning is quite different:

• The parameters in unix_cmds.cfg are the path used to call some external commands. All
needed external commands are supposed to be in the Unix path, however you can declare here
the complete path of the commands.

• If some parameter is set in paraloop.root.cfg, its value will not be changed by any user. It is
the place to choose the scheduler, for example, or any information relative to the whole site, its
architecture, its policy.

• If some parameter is set in paraloop.cfg, it is rather considered as a default value. The users
may override it, if needed.

The paraloop user configuration:

Every user may set some parameters for her personal use of paraloop. Those parameters may be
specified in several locations:

• ~/.paralooprc This file will be always read by paraloop, if it exists, so you should put here the
parameters you want to keep always to the same value. For instance, you may prefer to use
error as a directory name for your error files (the default is PARALOOP_error): in this case, you
should write the following line in ~/.paralooprc:
PARALOOP_error_directory = error

• Other configuration files: You may specify any configuration file with the –-cfg switch. This can be
convenient places to put parameters which are specific to some project.

The list of configurable parameters may be displayed with the command:
paraloop.pl --parameters

The order of the parameter files

The parameters are read from the command line or from the configuration files with the following priority.
It is supposed here that paraloop was called with the switch
–-cfg f1.cfg,f2.cfg

1. The switch on the command line
2. $PARALOOP/etc/unix_cmds.cfg
3. $PARALOOP/etc/paraloop.root.cfg
4. f1.cfg
5. f2.cfg
6. $HOME/.paralooprc
7. $PARALOOP/etc/paraloop.cfg

When a parameter is set, its value is never modified by any other file. So the switches of the command
line have the highest priority (but not all parameters can be set through the command line); the parameters
set in the etc/paraloop.root.cfg file cannot be reset afterwards, etc. The file etc/paraloop.cfg
defines default values, they will be used in last resort.

 3/14

The paraloop 1.3 documentation

Using paraloop

The input data:

We'll suppose in the following that your data have the following characteristics:

• They consist of a list of records

• Each record may be treated independently from the others.

A good example (taken from the bioinformatics field) is a multifasta files on which each sequence must
be treated one after another.

Specifying the Plugin to use:

In the following, we shall suppose you want to execute a blast for every sequence found in the fasta file,
using the database database/uniprot.fasta, putting the result to some files starting with BlastResult
in directory output. You'll use 10 processors for this purpose:

paraloop.pl --cfg blast.cfg --program Blast \
 --db databases/uniprot.fasta \
 --input input/seq.fasta --output output/BlastResult \
 --ncpus 10

The --program Blast is a plugin specification, telling paraloop you want to use the plugin called Blast.

Specifying start, end:

If you want to only run the blast from record nb. 0 to record nb. 1000 (included), you can specify the
--start and --end switches.

The interleaved mode:

You may distribute the jobs in two modes:

• slice mode: sequences 0 to 99 are attributed to job 1, 100 to 199 to job 2, etc. This is the default
mode.

• Interleaved mode: sequence 1 to jobs 1, sequence 2 to jobs 2, etc. This is useful if your data are
ordered so that the first records have a longer atomic treatment than the last ones, etc. This mode is
selected with the --interleaved switch.

Specifying files and directories:

Some switches or parameters let you specify the name of :

• the error directory (default PARALOOP_error)

• the lock directory (default PARALOOP_lock)

• the input file (no default)

• the database file (for some plugins only, no default)

• the output directory (no default)

You can use some special characters in specifying those parameters, which will be replaced at run time.
The legal characters are described here:

%h The hour part of time (11 for 11:30:05)
%m The minutes part of time (30 for 11:30:05)
%s The seconds part of time (05 for 11:30:05)
%Y The year part of date (05 for Sept 6th 2005)
%M The month part of date (09 for Sept 6th 2005)
%D The day part of date (06 for Sept 6th 2005)
%p The ncpus parameter
%l The local_ncpus parameter

 4/14

The paraloop 1.3 documentation

%v The slave_ncpus parameter
%t The master_ncpus parameter

Thus, if the parameter PARALOOP_lock_directory is set to lock-%Y-%M-%D, the value of the lock
directory selected at runtime will be: lock-06-11-30 (for November 30th, 2006).

Input file specification:

With the switch --input. You may specify:

• an absolute path (/path/to/directory/input/seq.fasta)

• a relative path, taken from the current directory (input/seq.fasta)

• a file name: the file lives in the current directory (seq.fasta)

The special characters explained above may be included in the directories or file name.

Output and log files specification:

With the switch --output. Here, you only specify a prefix: each job will complete this prefix, generating
a complete txt file name and a complete log file name: for ncpus=10, 10 pairs of (txt,log files) will be created
in the output directory, with the following names:

BlastResult.0.0.txt,BlastResult.100.0.txt,BlastResult.200.0.txt,...
BlastResult.0.0.log,BlastResult.100.0.log,BlastResult.200.0.log,...

The first number is the job number, the second number is incremented only if the .txt file grows too much
(see parameter PARALOOP_max_file_size), so that you'll never have to deal with huge files.

Please note the prefix may include absolute or relative path specifications, as well as special characters,
as explained above.

Load balancing:

When you launch 10 jobs or so in parallel, you have no warranty that some job does not last more time
than the others, in which case you loose a lot of time, waiting for only one job to finish.

It is possible to ask for some load balancing: in load balancing mode, when a job has finished his work, it
tries to “steal” some work to the other jobs. If any other job has more than 1 record to work on (the number of
records may be configured by the parameter PARALOOP_load_balancing_threshold), the faster job
steals half the remaining records to the slowest one. Load balancing is enabled by the parameter
PARALOOP_load_balancing_enabled or by the switch load_balancing_enabled

IMPORTANT NOTE – for the load balancing mode to work well, we must be able to lock files, as we
have to avoid concurrent access to “lock” files (ie files which keep track of the state of each job). We use perl
primitives to do that job, but those primitives may work or not, depending on the perl version you have, the
shared file system, etc. Let's say it should work quite well on a SMP multiprocessor machine, but this could
lead to some problems on a cluster, when the jobs to synchronize run on different jobs. Please test this
functionality before using it, and send me a mail if something goes wrong !

The log_level parameter

some information is logged to the log files. There are time stamps, returned values for the atomic jobs,
etc. The log level may be adjusted with this parameter:

LOG LEVELS 0,01,012:
The value 0 logs nearly nothing. The default log level is 01, which logs more things. A lot of log is

obtained by the 012 log level.

LOG LEVEL R:
Specifying an R in the log level parameters (together with the 0,1,2 characters, like in 012R 0R) leads

to a special and very interesting behaviour: when the atomic job returns a value different from 0, meaning
that there was some problem, the input data is written to a file. The file name is the output file name, with the
extension .in appended to it. This way, you get at the end the data which produced bad results: it is then

 5/14

The paraloop 1.3 documentation

very easy launching another paraloop job, probably with slightly different parameters, using those data as
input file.

Displaying the parameters:

It is sometimes difficult to know the value taken by every parameter, as there are several sources for
setting their values. For this purpose, you can use the switch –-show_parameters, together with the other
switches and parameters: when –-show_parameters is specified, paraloop starts as usual, but instead of
executing any processing, it displays each values's parameter and leaves.

Using external scripts

You may write scripts to be executed by paraloop at some predefined times: when a job begins or is
resumed, just before the job ends or is interrupted, before or after each atomic job. The script names must
be declared with the parameters PARALOOP_preproc_script,PARALOOP_postproc_script,
PARALOOP_preatom_script,PARALOOP_postatom_script.

The standard input of the script is connected to the current input file or the current input record, and the
standard output is connected to the current output file or record. Besides, you may use the environment
variables whose names begin with PARALOOP_ to know and may be use some information about the running
paraloop job. Please see the demo scripts in the directory $PARALOOP/tests/blast/input for the
details.

Specifying a paraloop run

All the following commands may be applied on an already running job, so you must specify the name of
the job. This can be done in a few ways:

DEFAULT RUN:
If you don't specify anything, the job whose lock directory has the default name PARALOOP_lock will be

used.

LOCK DIRECTORY:
You may specify any lock directory, whatever its name is (the name of the lock directory may be chosen

with the parameter PARALOOP_lock_directory). However, when a paraloop run is started in some
directory, a symbolic link is created, with the name PARALOOP_lock and pointing to the last created lock
directory, so that the default syntax may be used. However, if several paraloop jobs run in the same directory,
it may be necessary to specify the directory name.

JOB ID:
The job Id is a number from 1 to 10, if 10 cpus were requested. Say the lock directory is called lock, you

may specify checking for the job nb 5 with: paraloop.pl –-check lock/5

Checking your jobs:

Use paraloop –-check followed by the lock directory name to display a screen telling you some
information about the advancement of your jobs.

i

 Id start end step size current adv job Id status time rem time
--
 1 0 20750 1 20751 290 1 17614.nsymbiose RUNNING 000:07:01 008:15:03
 2 20751 41501 1 20751 21021 1 17615.nsymbiose RUNNING 000:06:47 008:34:33
 3 41502 62252 1 20751 41772 1 17616.nsymbiose RUNNING 000:06:49 008:37:04
 4 62253 83001 1 20749 62523 1 17617.nsymbiose RUNNING 000:06:57 008:47:08
--
Total advancement (%) = 1
Remaining estimated time = 008:33:27 [taking into account the interruptions = 009:01:02]
--

The column Id gives the job Id. The column adv gives the advancement of each job, in %. If the input
file has 100 records to process and you already have processed 10 records, the advancement will be 10.
Please note this does not necessarily mean that 10% of the time is elapsed. The column time gives the
processor time (not elapsed) since the beginning of the job. The column rem time is an estimation of the
time (elapsed) remaining for each job. This estimation is very approximative, and very simplistic, as it is

 6/14

The paraloop 1.3 documentation

supposed that every atomic job takes the same time. The total advancement gives the percent of atomic
jobs already done, considering all the jobs. The remaining estimated time gives two different
estimations of the remaining time: the first considers only the times slices during which the processors were
actually used, and the second takes into account the period during when the was no advancement because
the jobs did not have the processors (on a heavy loaded cluster equipped with a batch system, for instance).

Interrupting your jobs

Use paraloop –-interrupt to interrupt your jobs. The jobs will be stopped only at the end of the
current atomic job, so that it will be easy to restart them.

Resuming your jobs

Use paraloop –-resume followed by the lock directory name to resume your jobs after an
interruption.

Restarting your jobs

Use paraloop –-restart followed by the lock directory name to restart your jobs, after an
interruption.

RESTARTING VERSUS RESUMING:
Resuming the jobs means that the interrupted jobs are resumed from the point where they were

interrupted. Restarting the jobs means that the jobs are restarted from the beginning: thus, the already
computed data are computed again. However, no result is lost, because the already existing log and
output files are renamed to .bck .

The wait switch

Adding --wait to the above command line makes paraloop to wait for the end of all jobs. It is useful
using this switch when paraloop is integrated into a script.

However, if you are tired of waiting for the end of the jobs (this can be long), you may type ctrl-c to
retrieve your terminal. The only interrupted thread is the wainting one, so that your jobs will not be interrupted.
You can later restart paraloop in the wait mode, just typing:

paraloop.pl –-wait

In this mode, paraloop does not make anything but waiting for the end of the jobs.

The clean switches:

Using the --clean switch, paraloop waits for the end of the process, then “cleans” your files and
directories at the end of processing: the 10 output files (for ncpus=10) are all concatenated to a single output
file, the log files and lock directory are removed.

WARNING, this is a somewhat dangerous switch, as it will be impossible to know if anything went wrong
after the cleaning process: the log files are removed !

The verbose and quiet switches:

Adding --verbose to the command line is a good idea to display more messages, this can be useful in
the debugging phase, while --quiet lets you quietly sleep...

The local switch:

If you specify --local to the paraloop command, the scheduler System is used, instead of any other
scheduler: this causes the jobs to be executed on the local machine (hopefully a multiprocessor one), instead
of being distributed by a qsub or any other protocol.

If the parameter PARALOOP_no_local_mode is specified, the --local switch cannot be used. This
parameter is generally set by the administrator.

 7/14

The paraloop 1.3 documentation

The list of allowed switches may be displayed with the command:
paraloop.pl --switches

Working with plugins:
Paraloop comes with 3 useful plugins. 2 of them belong to the bioinformatics field, the 3rd one is a

general purpose plugin. You may write new plugins, as necessary for your job.

The list of installed plugins may be displayed with the command:
paraloop.pl --plugins

The Blast plugin:
This plugin performs a blast (ncbi or wu version) on each record read from the input file.

PARALOOP_Blast_params let you specify parameters for the blast program: if you are using the ncbi
version, -p blastp is the default value of this parameter.

However, please note you do not have to specify the -i,-o,-d (for ncbi) switches through this
parameter, as the plugin will specify the input file, the output file and the database in the correct way,
whatever version of Blast (ncbi or wu) you are using.

PARALOOP_Blast_origin ncbi or wu (default to ncbi)

PARALOOP_Blast_path The path to the binary program (default blastall or blastp)

PARALOOP_Blast_params The parameters used with the blast binary.

PARALOOP_Blast_chunk Compute the sequences copying chunk files together in the input
file. There is more performance than reading the sequences one
by one.

The Shell plugin:
The Shell plugin considers each line of the input file as a line of an executable shell. You may start the

line with a path to a shell interpreter, or consider that each line is interpreted by the shell whose name is set
by the parameter PARALOOP_Shell_interpreter.

Here is an example showing the first method:

/bin/tcsh : blabla
/bin/perl : if ($TOTO==1){blabla;};

and here is an example showing the second method:

get_Blastx.pl --seqfile AC151527.13 -–db SPTR --out AC151527.13blastx.gff
get_Blastx.pl --seqfile AC153128.1 –-db SPTR --out AC153128.1blastx.gff
get_Blastx.pl --seqfile AC153000.5 –-db SPTR --out AC153000.5blastx.gff
get_Blastx.pl --seqfile AC149809.10 –-db SPTR --out AC149809.10blastx.gff
get_Blastx.pl --seqfile AC149305.18 –-db SPTR --out AC149305.18blastx.gff

PARALOOP_Shell_interpreter The path to the shell interpreter (default /bin/sh)

The Bioperl plugin:
The Bioperl plugin extends BpInput, so that the input file must be in a format readable by bioperl.

Then, for each record, an external script is called. The path to this script is set through the parameter
PARALOOP_Bioperl_path. You'll have to write the external script, of course, but this can be a very simple
script: let's suppose you want to seg a fasta database. You could write the following script, called
seg_database:

 8/14

The paraloop 1.3 documentation

#!/bin/sh
seq $2 > $3
exit 0;

For each record, the plugin creates a temporary input file, then calls your script with the command:

seg_database 0 input output

0 is the default value of the parameter PARALOOP_Bioperl_params. It is passed to our script but not
used here. Input and output are temporary input and output files. However another version of
seg_database could use this parameter: let's suppose we want to be able to pass some seg options to the
script. We could write to the configuration file:

PARALOOP_Bioperl_params=”20 -a -x”

and rewrite our script as follows:

#!/bin/sh
seq $1 $2 > $3
exit 0;

For each record of the input fasta file, seq_database will be called as:

seg_database ”20 -a -x” input output

PARALOOP_Bioperl_path The path to the external script

PARALOOP_Bioperl_params The parameter passed to this script

PARALOOP_Bioperl_input_format The input format read by the external script (generally
not useful, as bioperl is able to recognize the input
format)

Working with schedulers
The scheduler is the object standing between the main program and the operating system. This object is

responsible for distributing the jobs on the different processors, using some protocol.

Paraloop comes with 4 schedulers. You may write new schedulers if your architecture is not covered by
any of them.

The list of installed schedulers may be displayed with the command:
paraloop.pl –schedulers

Selecting a scheduler:
You may select a scheduler with the parameter PARALOOP_Scheduler. This is generally the job of the

administrator to select the scheduler for the users. However, if a user calls paraloop with the --local
switch, then the System scheduler is used, whatever value PARALOOP_Scheduler is set to.

The System scheduler:
This scheduler is used in several situations:

• The computer is a multiprocessor computer without any queuing system installed. Paraloop uses
fork calls to submit itself again when necessary.

• The user did specify the --local switch, bypassing any queuing system, and disabling any jobs
distribution on the cluster, if any.

• We run in MASTER/SLAVE mode (cf. later).

PARALOOP_Scheduler System

 9/14

The paraloop 1.3 documentation

The PBS or SGE scheduler
This scheduler is used when paraloop is ran upon a PBS2 or SGE3 queuing system (or any PBS or

SGE compatible queuing system). Every new job is submitted through the qsub utility. The parameters for
this scheduler are described in the table under. The account parameter may be specified through the
--account switch.

The time limit

When used through the PBS scheduler, paraloop tries to know at each iteration if the time allowed for
this job is finished. If so, paraloop launches a qsub command, submitting a new job, then interrupts its
processing: this way, we can avoid being killed by the system because our cpu time limit is reached. Besides,
you may specify a parameter called PARALOOP_fair_time_limit: at each iteration, the elapsed time is
compared to this parameter. If the elapsed time exceeds the fair time limit, a new job is submitted and the
processing is interrupted.

PARALOOP_Scheduler PBS

PARALOOP_qsub_params

-l xxxx string to pass to qsub.

PARALOOP_account name String to pass to the -A switch of qsub

PARALOOP_fair_time_limit 3600 See text

The Rsystem scheduler
This scheduler is used when paraloop lives in a cluster, but there is no specialized program to

distribute the jobs: in this case, we must rely on some standard mechanism to distribute the jobs on the
nodes. Rsystem calls rsh or ssh to submit paraloop on a distant node. You can describe the cluster in a
very complete way; it is even possible defining subclusters, which can be useful for heterogeneous clusters.
Here is a template configuration:

PARALOOP_Scheduler Rsystem

PARALOOP_Rsystem_rsh ssh The remote command (rsh or ssh, defaults to rsh)

PARALOOP_Rsystem_tmp /scratch The temporary directory on each node
(defaults to /tmp)

PARALOOP_Rsystem_nodes node1,
node2, node3,
node4, orange,
tomate

The list of nodes belonging to the cluster

PARALOOP_Rsystem_cluster_32 node1,
node2

The nodes belonging to the subcluster 32
(any name may be used instead of 32)

PARALOOP_Rsystem_cluster_64 node3, node4 The nodes belonging to the subcluster 64

PARALOOP_Rsystem_cluster_lab orange, tomate The nodes belonging to the subcluster lab
(in fact, some computers in the lab)

PARALOOP_Rsystem_Node_orange 1,1 1 cpu, arbitrary speed 1

PARALOOP_Rsystem_Node_tomate 1,2 1 cpu, but more powerful than orange

PARALOOP_Rsystem_Node_node1 2,1 2 cpus, not too powerful

PARALOOP_Rsystem_Node_node2 2,1

PARALOOP_Rsystem_Node_node3 2,2 2 cpus, powerful

PARALOOP_Rsystem_Node_node4 2,2

2 www.openpbs.org
3 http://gridengine.sunsource.net/

 10/14

The paraloop 1.3 documentation

Please note it is important using ssh rather than rsh if you are working with workstations anywhere in
the lab. However, ssh must be configured so that no password will be asked (public key identification). the
fair time limit parameter is not defined for this scheduler, because there is no way to ask for a later startup,
as with queueing-based schedulers like PBS.

The autonomous or MASTER/SLAVE modes:
When in MASTER/SLAVE mode (parameter PARALOOP_mode), only a master job is submitted through

the scheduler. This master job then submits several slave jobs through another scheduler. The only tested
configuration is: scheduler PBS, slave scheduler system. This is used with an SMP computer, using PBS but
limiting the number of jobs a user may simultaneous run in the queue. The master job is launched through
PBS, then many slave jobs are launched by this job. Here is a configuration template:

PARALOOP_mode MASTER/SLAVE

PARALOOP_Scheduler PBS tested only with this scheduler

PARALOOP_slave_Scheduler System
this is the scheduler used by the master to make
the slaves to work. this is tested only with System

PARALOOP_ncpus 1 The number of masters we launch in parallel.
This is the number of PBS jobs simultaneously
running

PARALOOP_slave_ncpus 8 The number of slaves each master runs and
monitors.

PARALOOP_qsub_params -l cput=48:00:00,ncpus=8 It may be necessary to specify the parameters of
qsub, in order to be sure that the correct number
of processors is allocated to the job.

PARALOOP_fair_time_limit 18000 After 5 hours (about 40 hours of cpu time), the
PBS job is finished and submitted again. This
avoids being killed by PBS after 48 hours cpu
time

 11/14

The paraloop 1.3 documentation

Writing a new plugin

The Dummy plugin
To use paraloop for your calculations, you may use the Shell plugin and build an input file containing

the commands you want to execute, or the Bioperl plugin and write a little script, called by this plugin
for every input file record. However, in many situations, it is more convenient writing a new plugin to
encapsulate the needed code. This is not a difficult task, and this chapter explains how to write such a
plugin.

The first step is to decide if your plugin should extend the already existing PdInput or LnInput
objects, or if you have to write also new Input-output routines:

• BpInput calls bioperl to read the input file. Thus, if the format of your files is a handled by
bioperl, there is no problem using BpInput.

• LnInput considers that each line of the input file is a record: if your file is line-oriented, it is a
good idea extending this object.

Writing an input object
Let's suppose it is impossible for you to use BpInput or LnInput. You'll have to write a new input

object, let us call it MyInput. The best thing to do is to start from an existing object, let's say LnInput. So,
please copy LnInput.pm to MyInput.pm

Module name, inheritance:

Please change LnInput to MyInput in the following lines, at start of the code:

package PARALOOP::PLUGIN::LnInput;

...
use Logger;
use PARALOOP::PLUGIN::Plugin;

@PARALOOP::PLUGIN::LnInput::ISA = qw(PARALOOP::PLUGIN::Plugin);

The __Init sub:

This sub is called by the New function (defined in the Plugin.pm object). Its main goal is to open the
input resource and to initialize the private variable __records_counter.

The NextRecord, Tell, TellLength subs

NextRecord reads and returns the next record of the input file. It also updates __records_counter.

Tell returns __records_counter, and TellLength returns the number of records in the input file.

The SkipRecords sub

This sub skips the number of records passed by parameter. This number may be negative (this may be
interesting when the user supplies a negative --step switch), even if for several plugins (namely LnInput
and BpInput) this is forbidden. Do not forget to update __records_counter.

Writing the plugin
You can now write your plugin, extending the new object MyInput. Let's call it MyPlugin, first copy

Dummy.pm to MyPlugin.pm

 12/14

The paraloop 1.3 documentation

The WhatParaloopPlugin and Parameter subs

It is requisite to define WhatParaloopPlugin, because if this sub does not exist, the object you are
writing is not considered as a plugin. WhatParaloopPlugin should return some lines shortly describing
your plugin. The sub parameters should return the parameters needed by your plugin, their meanings and
their default values in a string: it will be printed when the user will call paraloop with the
--parameters switch.

The __Init and DESTROY subs

__Init is called by the constructor of the object. This function is important for liability of the plugin: its
role is to check as much as possible, in order to be sure that the plugin will work when it will be given the
processor (may be several hours after paraloop has been launched, if you are working with a queing system).
The general algorithm is described here:

• Retrieve the parameters: a ref to a ParamParser object, and a ref to a Logger object.

• Check we can open the input and output files

• Check the other parameters: do they have reasonable values ?

• Call the line:
$self->SUPER::__Init(-inputfile=>$inputfile,-log=>$log);
to initialize the superclass (generally a XxInput object, as described above).

• Ask the superclass the job_id, will be useful for temporary objects
• Create a temporary directory if necessary

• Store useful data in the private storage space of the object ($self)

The function DESTROY is called by perl when the program is terminated. It should remove every
temporary directory or file crated by __Init.

The Exec sub

The computation you want to implement in your plugin is written in this sub. Its algorithm is explained
here:

• Exec is passed only one parameter: the timeout in seconds, i.e. The max number of seconds the
function Exec can spend.

• Retrieve useful variables from %self
• change to the temporary directory (created by __Init) if necessary.
• Read the next record of the input file, calling the NextRecord function of the XxInput object we

extend. Remember this object is responsible for the input resource, this resource was opened by
its __Init function.

• It may be useful to copy the record to a temporary file. As your current directory is now a
temporary directory, created by __Init with an unique name, you do not have to care of the file
name.

• Build a command line to call the external program with the correct parameters ($cmd). The output
should be in a temporary file, as it is easier to compute the number of bytes returned by this call
(stored in $nb).

• Call $cmd using the function RunExt from the module Runner:
my ($sts,$killed)=RunExt(-cmd=>$cmd,-timeout=>$timeout);

• The output file is not currently opened, however its name is available as a private variable: you can
just copy the output of your processing to this file.

• Return 3 values: $nb, $sts (the retuned value of your program), $killed (a number telling if a
signal was received during the execution).

Debugging your plugin
You have a few solutions for debugging your plugin.

 13/14

The paraloop 1.3 documentation

The –-plugin_debug switch

To debug your plugin, you should start paraloop in monoprocessor mode, thus specifying the
--monoprocessor switch, but specifying also the switch --plugin_debug. You also must specify a
--start and --end switch. It is a good idea to specify a very short range of records .

Paraloop starts in mono/init mode, then instead of submitting a new paraloop through the scheduler, it
switches to mono/running mode, calling the main loop. You may launch paraloop through the perl debugger
(perl -d paraloop.pl ...), which makes easy to debug your code in the usual way.

The –verbose switch

You may also run paraloop with the --verbose switch, thus generating more informative messages.

The log_level parameter

In order to debug your plugin, do not forget logging informative messages through the logger object. You
have to call the $o_log->Trace function to log something. You must specify a log level to this function: the
normal level is 1, but it is good practice to log as many information as possible, may be with a log level of 2.
Running paraloop with parameter PARALOOP_log_level set to '012' will then produce a lot of
messages , useful for debugging.

 14/14

	Introduction
	License
	General information:
	Installing and configuring paraloop
	Needed modules
	Choosing a root directory
	Defining the environment variable $PARALOOP:
	Calling paraloop:

	configuring paraloop:
	The paraloop user configuration:
	The order of the parameter files

	Using paraloop
	The input data:
	Specifying the Plugin to use:
	Specifying start, end:
	The interleaved mode:
	Specifying files and directories:
	Input file specification:
	Output and log files specification:
	Load balancing:
	The log_level parameter
	Log levels 0,01,012:
	Log level R:

	Displaying the parameters:
	Using external scripts
	Specifying a paraloop run
	Default run:
	Lock directory:
	Job Id:

	Checking your jobs:
	Interrupting your jobs
	Resuming your jobs
	Restarting your jobs
	Restarting versus resuming:

	The wait switch
	The clean switches:
	The verbose and quiet switches:
	The local switch:

	Working with plugins:
	The Blast plugin:
	The Shell plugin:
	The Bioperl plugin:

	Working with schedulers
	Selecting a scheduler:
	The System scheduler:
	The PBS or SGE scheduler
	The time limit

	The Rsystem scheduler
	The autonomous or MASTER/SLAVE modes:

	Writing a new plugin
	The Dummy plugin
	Writing an input object
	Module name, inheritance:
	The __Init sub:
	The NextRecord, Tell, TellLength subs
	The SkipRecords sub

	Writing the plugin
	The WhatParaloopPlugin and Parameter subs
	The __Init and DESTROY subs
	The Exec sub

	Debugging your plugin
	The –-plugin_debug switch
	The –verbose switch
	The log_level parameter

